Summary
It is clear to see that stainless steel has several significant benefits over galvanised mild steel. It is corrosion resistance and low life cost makes it an excellent choice for all applications within the water industry.
It is important to determine which grade of stainless steel to use for your application. For example in regular atmospheric environments, 304L is suitable due to low corrosive particles/deposits. In harsh environments (wastewater treatment) and marine or chloride bearing atmospheres, 316L or even super duplex is recommended for complete corrosion resistance (British Stainless Steel Association, 2002). Once the correct grade of stainless steel is selected, the applications are endless. As seen in figures 4 and 5, a slight initial investment in stainless steel allows for a low maintenance longer life.
At HUBER Technology, we pride ourselves in using the highest quality stainless steels for a variety of municipal and industrial applications. Benefits such as ease of fabrication due to its ductile property mean complex shaped products can be formed. Our large manufacturing facility, extensive range of manufacturing machinery (nesting and laser cutting) and variety of stainless steels means we can find the solution to any application. As part of our manufacturing process at HUBER, all of our machine components and products are acid pickled in an acid bath prior to passivation to maximise corrosive resistance. Stainless steel products will last a lifetime and prevent the need for regular maintenance, thus providing the most cost effective solution.
Bibliography
Allion, A., Lassiaz, S., Peguet, L., Boillot, P., Jacques, S., Peultier, J., Bonnet, M.-C., 2011. A long-term study on biofilm development in drinking water distribution system: comparison of stainless steel grades with commonly used materials. Revue de Métallurgie, 108 (4), pp.259–268
Delaunois, F., Tosar, F. and Vitry, V., 2014. Corrosion behaviour and bio corrosion of galvanized steel water distribution systems. Bio electrochemistry, 97, pp.110-119.
Hilti.co.uk. 2015. Corrosion Handbook. [Online] Available at: <https://www.hilti.co.uk/medias/sys_master/documents/hc7/9166758576158/Hilti-Corrosion-Handbook-Technical-information-ASSET-DOC-LOC-5461972.pdf> [Accessed 17 March 2021].
Kocijan, A., Merl, D. and Jenko, M., 2011. The corrosion behaviour of austenitic and duplex stainless steels in artificial saliva with the addition of fluoride. Corrosion Science, 53(2), pp.776-783.
Lee, H., Rasheed, U. and Kong, M., 2018. A Study on the Comparison of Corrosion in Water Supply Pipes Due to Tap Water (TW) and Reclaimed Water (RW). Water, 10(4), p.496.
Muthupandi, V., Bala Srinivasan, P., Seshadri, S. and Sundaresan, S., 2003. Effect of weld metal chemistry and heat input on the structure and properties of duplex stainless steel welds. Materials Science and Engineering: A, 358(1-2), pp.9-16.
Operational Guidelines and Code of Practice for Stainless Steel Products in Drinking Water Supply, British Stainless Steel Association, (2002)
Powell, C. and Jordan, D., 2005. Fabricating stainless steels for the water industry. Australia: Nickel Institute.
Raines, T., 2018. Galvanized Pipe - Raines - Water Harvest. [Online] Raines - Water Harvest. Available at: <https://raineswaterharvest.com/galvanized-pipe/> [Accessed 8 March 2021].
Tabor, D., 2007. The hardness of metals. Oxford: Clarendon Press.
von Matern,, S., 1993. Life Cycle Cost - Method and Use for Evaluating Stainless Steel in Various Applications. Corrosion Reviews, 11(3-4), pp.1-16.
Water UK, 1999. Applications for Stainless Steel in the Water Industry. [Online] Water.org.uk. Available at: <https://www.water.org.uk/wp-content/uploads/2018/11/ign-4-25-02.pdf> [Accessed 9 December 2020].
Tom Willis – HUBER Technology – Market Development SAS, SAS- Safe Access Solutions